
ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed Journal

2025, Volume 6 Issue 2

www.ijisea.org

 IJISEA – editor@ijisea.org Page 66

Secure Web Application Embed a Honeypot Link Using

AWS

M.Sreedevi1, A.Harini 2,CH.Yogesh Nithin3, CH.Lakshmi Prasanna4,CH.Chinni Raghava5

Assistant Professor1,UGStudent2,3,4,5

Computer Science and Engineering

Amrita Sai Institute of Science & Technology

Paritala, Andhra Pradesh , India

ABSTRACT

Modern web applications face increasing threats from attacks such as SQL injection, XSS, and automated

bots. This project enhances web security by integrating layered defense strategies including stealth

honeypots, POST-based route authentication, and real-time attacker logging. A deceptive dashboard link

and hidden URL routes silently trap and monitor attackers. Unauthorized access attempts to protected

routes like the admin panel are redirected to a secure POST-authenticated page. Incorrect attempts trigger

silent logging of attacker data including IP, email, timestamp, and user-agent. A secondary honeypot

embedded in the authentication flow ensures continuous monitoring, while a concealed /admin_settings

route responds passively yet logs intrusion attempts. This multi-pronged approach offers deeper threat

detection, behavioral insights, and reinforces the resilience of modern web applications.

Key words:AWS, Python, Honeypot, WAF

I.INTRODUCTION

Web applications are critical assets for businesses and individuals, yet they face growing threats such as

SQL injection (SQLi), cross-site scripting (XSS), and automated bot attacks. These attacks can

compromise data, impact performance, and disrupt services. This project enhances web security by

integrating two targeted honeypots: one concealed within the dashboard and another embedded in the

URL structure. These honeypots silently detect and log unauthorized access attempts, enabling real-time

threat analysis. Strict access control and request validation reduce false positives and ensure interaction

only through valid user flows. This dual-honeypot approach strengthens early threat detection, supports

informed incident response, and improves overall web application resilience.

II.RELATED WORK

Hoffman, A. (2020) – Web Application Security: Exploitation and Countermeasures for Modern Web

Applications[1]

http://www.ijisea.org/
mailto:editor@ijisea.org

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed Journal

2025, Volume 6 Issue 2

www.ijisea.org

 IJISEA – editor@ijisea.org Page 67

This book offers a detailed understanding of modern web application threats and how Web Application

Firewalls (WAFs) play a central role in mitigating attacks such as SQL injection, cross-site scripting (XSS),

and remote code execution. The author emphasizes how WAFs filter, monitor, and block malicious HTTP

traffic based on rule sets, helping secure applications at the edge. From this work, I adopted the concept of

leveraging WAFs as the first line of defense in cloud-deployed applications. My project builds upon this

foundation by integrating AWS WAF into a Flask-based web application. However, I innovated by

embedding honeypot logic within the application itself, which works in tandem with AWS WAF. When

malicious behavior is detected through honeypot triggers, the application can dynamically flag suspicious

IP addresses, which can later be used to refine WAF rules. This approach extends the concept of

traditional static rule-based protection into a more dynamic, behavior-aware system.

Sullivan, B., & Liu, V. (2011) – Web Application Security: A Beginner's Guide[2]

This guide introduces foundational security principles for web developers and system architects, explaining

secure coding, access control, and the integration of WAFs into the development lifecycle. A key takeaway

from this book is the idea that application security must be incorporated from the design phase, not just as

an afterthought. I applied this by building in multi-layered access control mechanisms, such as URL

password locks and session validation, from the start of development. Where I innovated is in introducing

voice-based access verification as an experimental, biometric-inspired mechanism. This goes beyond

traditional password authentication by allowing only users who can verbally speak the passphrase

"KannaAppa" to gain access to critical admin routes. Combining this with honeypot traps for incorrect

access attempts represents a novel method of layered, deceptive, and adaptive access control.

 Stuttard, D., & Pinto, M. (2011) – The Web Application Hacker's Handbook[3]

This book, often regarded as the bible for web penetration testers, deeply explores the techniques used by

attackers to exploit security flaws in web applications. A significant portion is dedicated to understanding

how attackers bypass WAFs and exploit logic flaws. The knowledge gained from this work influenced my

strategy in designing honeypot endpoints disguised as legitimate admin functionality.for example, a hidden

/admin_settings route that appears functional but is, in fact, a decoy trap. When unauthorized users access

this page, their actions are silently logged along with their IP address, email (if logged in), and timestamp.

Unlike traditional intrusion detection systems, this method provides attacker intelligence without alerting

them, thus allowing ongoing behavior profiling. This application-level deception technique is a direct

evolution of what the book teaches about attacker behavior, applied innovatively within the app

architecture.

Collins, M. S. (2014) – Network Security Through Data Analysis[4]

Collins highlights how proactive data analysis can transform network security from reactive to predictive.

Through real-world examples, the author shows how logs, alerts, and traffic data can be mined to identify

patterns that indicate intrusion attempts. Inspired by this, my project includes a comprehensive attacker

logging module that captures access attempts to honeypot routes, incorrect URL lock attempts, and failed

voice authentication. This data is stored in a structured format and can be visualized through an admin

dashboard, allowing administrators to track patterns, frequency, and sources of attempted breaches. While

the original book focuses on network-level data, I have extended the concept to application-layer

intelligence, giving web developers insight into attacker behavior in real time, with the potential to feed this

information back into automated security responses.

http://www.ijisea.org/
mailto:editor@ijisea.org

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed Journal

2025, Volume 6 Issue 2

www.ijisea.org

 IJISEA – editor@ijisea.org Page 68

III.METHODOLOGY

System Architecture

 overview of AWS WAF and Honeypot integration

Deploy AWS WAF to Protect the Web Application: Implement AWS Web Application Firewall (WAF) to filter

and monitor incoming HTTP/HTTPS requests, providing protection against common web threats such as

SQL injection, cross-site scripting (XSS), and bot attacks.

Embed a Honeypot Link for Threat Analysis: Integrate a honeypot link within the web application to attract

and monitor potential attackers. This will allow for the collection of valuable data on unauthorized access

attempts, including IP addresses, attack methods, and patterns.

 Enhance Threat Detection and Response: Utilize AWS WAF in conjunction with the honeypot to improve

the detection and response to security incidents. The aim is to correlate honeypot interactions with WAF

logs for a deeper understanding of attack behavior and to update security rules accordingly.

 Improve Application Security Posture: Strengthen the overall security of the web application by leveraging

the defensive capabilities of AWS WAF and the proactive data collection offered by the honeypot. The

combination ensures a comprehensive and multilayered security approach.

 Minimize False Positives and Optimize Performance: Fine-tune AWS WAF rules and honeypot

configurations to reduce false positives, ensuring that security measures do not negatively impact user

experience or application performance.

System Implementation

STEP-BY-STEP IMPLEMENTATION

1. CREATE A HOSTING ENVIRONMENT:

SET UP A WEB SERVER: Explain the process of setting up a web server (e.g., using AWS EC2 or another

cloud provider).

CONFIGURE FOR STATIC CONTENT: Include details on how to configure the server to serve static

content, such as HTML, CSS, and JavaScript files.

LOGGING AND MONITORING: Mention the importance of enabling logging (using tools like AWS

CloudWatch) and monitoring the server for any anomalies or issues.

2. EMBEDDING A HONEYPOT LINK:

DESIGN THE HONEYPOT LINK: Choose a URL that attackers might target (e.g., /admin-access). Ensure

that this link isn’t accessible or visible to regular users.

IMPLEMENT THE HONEYPOT: Describe how to embed the link into the web application, in locations

where attackers are likely to find it.

http://www.ijisea.org/
mailto:editor@ijisea.org

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed Journal

2025, Volume 6 Issue 2

www.ijisea.org

 IJISEA – editor@ijisea.org Page 69

SAMPLE CODE: Provide a snippet of code that demonstrates how to create and embed the honeypot link

within your HTML code.

3. TESTING AND FINAL DEPLOYMENT:

DEPLOY IN PRODUCTION: Discuss how to move the web application from a development environment to

a production server, ensuring that all configurations (such as AWS WAF rules) are correctly applied.

CREATE A HOSTING ENVIRONMENT

1. SET UP A WEB SERVER:

CHOOSE A HOSTING PROVIDER: AWS EC2, DigitalOcean, or any cloud hosting platform can be used.

PROVISION THE SERVER: Create a virtual machine (VM) or an instance to host the web application. On

AWS, this can be done using EC2 instances.

INSTALL WEB SERVER SOFTWARE: Install the necessary software such as Apache, Nginx, or any other

web server to serve the web application.

2. CONFIGURE FOR STATIC CONTENT:

DIRECTORY SETUP: Organize directories for static content such as HTML, CSS, JavaScript, and image

files.

ENABLE STATIC CONTENT DELIVERY: Configure the web server (e.g., Nginx or Apache) to serve static

content from specified directories efficiently.

3. LOGGING AND MONITORING:

ENABLE SERVER LOGS: Enable access logs and error logs on the web server to track requests and

issues.

INTEGRATE MONITORING TOOLS: Use AWS CloudWatch, Prometheus, or any monitoring tool to track

server health, uptime, and performance metrics.

4. STEPS FOR CREATING A HOSTING ENVIRONMENT:

1.CHOOSE A HOSTING PROVIDER: Select a cloud provider (e.g., AWS, Digital Ocean,chey or Google

Cloud) for your hosting needs.

PROVISION A VIRTUALMACHINE/INSTANCE: Spin up a virtual machine (VM) using the cloud provider's

dashboard (e.g., AWS EC2) and choose the appropriate instance type (e.g., t2.micro for AWS).

SET UP WEB SERVER SOFTWARE:

Install a web server (e.g., Apache or Nginx).

Ensure that the web server is set up to start automatically when the VM starts.

CONFIGURE STATIC CONTENT DELIVERY:

Set up appropriate folders and permissions for storing static files like HTML, CSS, and JS.

http://www.ijisea.org/
mailto:editor@ijisea.org

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed Journal

2025, Volume 6 Issue 2

www.ijisea.org

 IJISEA – editor@ijisea.org Page 70

Modify web server configurations to serve static content from the correct directory

ENABLE LOGGING AND MONITORING:

Enable access and error logging in the web server configuration.

Use a tool like AWS CloudWatch to gather log data and monitor the server’s performance and health.

IV.RESULTS

EXCPETED OUTPUTS

SCREENSHOT 1: LOGIN AND REGISTER FORM WITH AWS IP ADDRESS

Display the login and registration form page of the website with the deployed IP address , where users can

securely register and log in. Indicate that it's protected by AWS WAF and uses HTTPS for secure

communication.

App window pop- up

SCREENSHOT 2: ATTACK THROUGH URL

Through URL also the hacker can’t access the data from the admin panel . Incase of using this url way for

accessing data that time also the unauthorization will be pop-up and also the attackers data will be

recorded because we placed an second honeypot in the url.

user interface

 Attendance screen

SCREENSHOT 3 : ATTACK THROUGH URL (POST Method Protection)

Through URL also the hacker can’t access the data from the admin panel . Incase of using this url way for

accessing data that time also the unauthorization will be pop-up and also the attackers data will be

recorded because we placed an second honeypot in the url.

The system is designed to prevent unauthorized access even if an attacker attempts to directly reach the

admin_panel route through the URL.

When a hacker manually enters the admin_panel route: No unauthorized access alert is shown

immediately, maintaining a stealth approach. Instead, the attacker is redirected to a password

authentication page, appearing as a normal security measure.

This authentication form operates via a POST method, ensuring that credentials are securely transmitted

and preventing password exposure through the URL.

Access control behavior:

If the correct password is submitted via the POST method, the user is granted access to the Admin

Dashboard.

http://www.ijisea.org/
mailto:editor@ijisea.org

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed Journal

2025, Volume 6 Issue 2

www.ijisea.org

 IJISEA – editor@ijisea.org Page 71

Figure 1:Shows Dashboard

Figure 2:Shows Screenshot 4

SCREENSHOT 4: ATTACK THROUGH URL

The /admin_settings route is designed as a silent honeypot.

When an unauthorized user attempts to access this route, the application does not trigger any visible alert

or unauthorized access message to avoid raising suspicion.

Instead, the server responds with a 202 Accepted HTTP status code, indicating that the request was

received and understood but not processed further.

Simultaneously, the system logs the access attempt in the database, capturing critical attacker details such

as the user's email, IP address, timestam p, and user agent for further security analysis.

Figure 3:Shows Screenshot 2

SCREENSHOT 2: ATTACKERS DATA

http://www.ijisea.org/
mailto:editor@ijisea.org

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed Journal

2025, Volume 6 Issue 2

www.ijisea.org

 IJISEA – editor@ijisea.org Page 72

Show the attackers data page, which contains detailed logs about malicious attempts. Include information

like login attempts through the honeypot, attack patterns, or vulnerability probes.

V.CONCLUSIONS

 This project presents a robust and intelligent web application security framework by integrating AWS WAF

with a dual-honeypot strategy. The honeypots—one embedded in the dashboard and another hidden in the

URL structure—silently monitored and logged attacker behavior, aiding in proactive threat analysis. AWS

WAF served as the primary defense, effectively mitigating threats like SQL injection, XSS, and bot attacks

through customized, adaptive rules. Integration with AWS CloudWatch, CloudTrail, and Lambda enabled

real-time monitoring, automated incident response, and forensic auditing. The system maintained high

performance and user experience while offering scalable protection against evolving cyber threats. Overall,

the project demonstrates how combining proactive honeypots with reactive WAF defenses creates a

resilient and adaptive security model for modern web applications.

ACKNOWLEDGEMENT(S)

It gives me immense pleasure to thank my guide Professor of CSE Dr.M.Sreedevi, M Tech, (PhD), for

having been a source of constant inspiration, precious guidance, and generous assistance during the

project work. I deem it as a privilege to have worked under his able guidance. Without his close monitoring

and valuable suggestions, this work would not have taken this shape. I feel that his help is unforgettable.

I take the privilege to record my thanks to H.O.D of CSE Dr. P. CHIRANJEEVI PhD for his

encouragement, cooperation, and valuable suggestions to complete project in time.

I am very thankful to honorable Principal Dr M. SASIDHAR PhD and I express my sincere gratitude and

deep sense of respect for making me available with all the required assistance and for his support and

inspiration to carry out this project in the Institute.

I am thankful to the teaching and non-teaching staff of CSE department for their direct as well as indirect

help in my project.

I am elated to avail myself to this opportunity to express my deep sense of gratitude to my parents

REFERENCES:

[1]Hoffman, A. (2020). Web Application Security: Exploitation and Countermeasures for Modern Web

Applications. No Starch Press.

Description: This book covers various web application security topics, including an in-depth understanding

of how Web Application Firewalls (WAFs) function and their role in mitigating common vulnerabilities like

SQL injection, XSS, and other web-based attacks.

[2]Sullivan, B., & Liu, V. (2011). Web Application Security: A Beginner's Guide. McGraw-Hill Education.

http://www.ijisea.org/
mailto:editor@ijisea.org

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed Journal

2025, Volume 6 Issue 2

www.ijisea.org

 IJISEA – editor@ijisea.org Page 73

Description: This guide offers a thorough introduction to securing web applications, including a section on

WAFs, their implementation, and how they help protect applications from common attacks and advanced

threats.

[3]Stuttard, D., & Pinto, M. (2011). The Web Application Hacker's Handbook: Finding and Exploiting

Security Flaws (2nd ed.). Wiley.

Description: Although this book focuses primarily on web application vulnerabilities and penetration testing,

it also provides insights into how Web Application Firewalls can be circumvented and their role in mitigating

attacks.

[4]Collins, M. S. (2014). Network Security Through Data Analysis: From Data to Action. O’Reilly Media.

Description: This book focuses on security analysis and data-driven decision-making in network and web

security. It covers techniques that complement WAFs, including anomaly detection, which can be

integrated into WAFs for enhanced security.

[5]Amazon Web Services (AWS). (2024). AWS WAF Developer Guide. Retrieved from

https://docs.aws.amazon.com/waf

[6]Spitzner, L. (2003). Honeypots: Tracking Hackers. Addison-Wesley Professional.

[7]Krawetz, N. (2004). Introduction to Honeypots. Retrieved from

https://www.securityfocus.com/infocus/1690

[8]Patel, A., Taghavi, M., Bakhtiyari, K., & Junior, J. C. (2013). An intrusion detection and prevention

system in cloud computing: A systematic review. Journal of Network and Computer Applications, 36(1),

25–41.

[9]Schneier, B. (2015). Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World.

W.W. Norton & Company.

[10]Cloud Security Alliance (CSA). (2023). Cloud Security Guidance: Best Practices for Securing

Applications. Retrieved from https://cloudsecurityalliance.org/

http://www.ijisea.org/
mailto:editor@ijisea.org

